Supernova blast sends survivor star hurtling across the Galaxy

Artist's impression of a supernova ejecting its star
Artist's impression of a supernova ejecting its star. The material ejected by the supernova will initially expand very rapidly, but then gradually slow down, forming an intricate giant bubble of hot glowing gas. Eventually, the charred remains of the white dwarf that exploded will overtake these gaseous layers, and speed out onto its journey across the Galaxy.
Credit
University of Warwick / Mark Garlick

An exploding white dwarf star blasted itself out of its orbit with another star in a ‘partial supernova’ and is now hurtling across our galaxy, according to a new study from the University of Warwick and reported in the journal Monthly Notices of the Royal Astronomical Society
 
The research analysed a white dwarf that was previously found to have an unusual atmospheric composition. It reveals that the star was most likely a binary star that survived its supernova explosion, which sent it and its companion flying through the Milky Way in opposite directions.
 
White dwarfs are the remaining cores of red giants after these huge stars have died and shed their outer layers, cooling over the course of billions of years. The majority of white dwarfs have atmospheres composed almost entirely of hydrogen or helium, with occasional evidence of carbon or oxygen dredged up from the star’s core.
 
This star, designated SDSS J1240+6710 and discovered in 2015, seemed to contain neither hydrogen nor helium, composed instead of an unusual mix of oxygen, neon, magnesium and silicon. Using the Hubble Space Telescope, the scientists also identified carbon, sodium, and aluminium in the star’s atmosphere, all of which are produced in the first thermonuclear reactions of a supernova.
 
However, there is a clear absence of what is known as the ‘iron group’ of elements, iron, nickel, chromium and manganese. These heavier elements are normally cooked up from the lighter ones, and make up the defining features of thermonuclear supernovae. The lack of iron group elements in SDSSJ1240+6710 suggests that the star only went through a partial supernova before the nuclear burning died out.
 
The scientists were able to measure the white dwarf’s velocity and found that it is travelling at 900,000 kilometres per hour. It also has a particularly low mass for a white dwarf – only 40% the mass of our Sun – which would be consistent with the loss of mass from a partial supernova.
 
Lead author Professor Boris Gaensicke from the Department of Physics at the University of Warwick said: “This star is unique because it has all the key features of a white dwarf but it has this very high velocity and unusual abundances that make no sense when combined with its low mass."
 
“It has a chemical composition which is the fingerprint of nuclear burning, a low mass and a very high velocity: all of these facts imply that it must have come from some kind of close binary system and it must have undergone thermonuclear ignition. It would have been a type of supernova, but of a kind that that we haven’t seen before.”
 
The scientists theorise that the supernova disrupted the white dwarf’s orbit with its partner star when it very abruptly ejected a large proportion of its mass. Both stars would have been carried off in opposite directions at their orbital velocities in a kind of slingshot manoeuvre, which would account for the star’s high velocity.
 
Professor Gaensicke adds: “If it was a tight binary and it underwent thermonuclear ignition, ejecting quite a lot of its mass, you have the conditions to produce a low mass white dwarf and have it fly away with its orbital velocity.”
 
Dr Roberto Raddi of Universitat Politècnica de Catalunya, Spain, who carried out the kinematic analysis, said: “Once again, the synergy between very precise Gaia astrometry and spectroscopic analysis have helped to constrain the striking properties of a unique white dwarf, which probably formed in a thermonuclear supernova and was ejected at high velocity as consequence of the explosion.”

The new research opens up the possibility of many more survivors of supernovae travelling undiscovered through the Milky Way, as well as other types of supernovae occurring in other galaxies that astronomers have never seen before.

 

Media contacts


Tom Frew
Senior Press and Media Relations Manager
University of Warwick
Mob: +44 (0)7785 433 155
a.t.frew@warwick.ac.uk

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0)7920 531 221
alice.j.scott@warwick.ac.uk

 

Images and captions

 

Artist's impression of a supernova ejecting its star
Artist's impression of a supernova ejecting its star. The material ejected by the supernova will initially expand very rapidly, but then gradually slow down, forming an intricate giant bubble of hot glowing gas. Eventually, the charred remains of the white dwarf that exploded will overtake these gaseous layers, and speed out onto its journey across the Galaxy.
University of Warwick / Mark Garlick

 

Further information

 

The research was funded by the Leverhulme Trust and Science and Technology Facilities Council (STFC), part of UK Research and Innovation.


The new work appears in, “SDSS J124043.01+671034.68: The partially burned remnant of a low-mass white dwarf that underwent thermonuclear ignition?”, B.T. Gänsicke, D. Koester et al., Monthly Notices of the Royal Astronomical Society (2020), Vol. 496 (4), pp. 4079–4086 (DOI: 10.1093/mnras/staa1761).

 

Notes for editors

 

The Science and Technology Facilities Council (STFC) is part of UK Research and Innovation – the UK body which works in partnership with universities, research organisations, businesses, charities, and government to create the best possible environment for research and innovation to flourish. For more information visit UK Research and Innovation.

STFC funds and supports research in particle and nuclear physics, astronomy, gravitational research and astrophysics, and space science and also operates a network of five national laboratories, including the Rutherford Appleton Laboratory and the Daresbury Laboratory, as well as supporting UK research at a number of international research facilities including CERN, FERMILAB, the ESO telescopes in Chile and many more.

Visit https://stfc.ukri.org/ for more information. @STFC_Matters

 

The Leverhulme Trust was established by the Will of William Hesketh Lever, the founder of Lever Brothers. Since 1925 the Trust has provided grants and scholarships for research and education. Today, it is one of the largest all-subject providers of research funding in the UK, currently distributing £100 million each year. For more information about the Trust, please visit www.leverhulme.ac.uk and follow the Trust on Twitter @LeverhulmeTrust

 

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognises outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,400 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.

In 2020 the RAS is 200 years old. The Society is celebrating its bicentennial anniversary with a series of events around the UK, including public lectures, exhibitions, an organ recital, a pop-up planetarium, and the culmination of the RAS 200: Sky & Earth project.

Follow the RAS on Twitter, Facebook, Instagram and YouTube

Download the RAS Podcast from Audioboom

 

Submitted by Pam Rowden on Wed, 15/07/2020 - 17:40