Hidden supermassive black holes brought to life by galaxies on collision course

An artist's impression of a disc shaped cloud of dust around a black hole. Two jets coming from either side of the disc appear bright blue and extend towards the outside of the image.
An artist’s impression of a dusty region around a black hole. The most dust-enshrouded black holes can completely stop X-rays and visible light escaping, but the same dust can be heated by a growing black hole and will glow brightly at infrared wavelengths.
Credit
ESA/NASA, the AVO project and Paolo Padovani

Astronomers have found that supermassive black holes obscured by dust are more likely to grow and release tremendous amounts of energy when they are inside galaxies that are expected to collide with a neighbouring galaxy. The new work, led by researchers from Newcastle University, is published in Monthly Notices of the Royal Astronomical Society.

Galaxies, including our own Milky Way, contain supermassive black holes at their centres. They have masses equivalent to millions, or even billions, times that of our Sun. These black holes grow by ‘eating’ gas that falls on to them. However, what drives the gas close enough to the black holes for this to happen is an ongoing mystery.

One possibility is that when galaxies are close enough together, they are likely to be gravitationally pulled towards each other and ‘merge’ into one larger galaxy.

In the final stages of its journey into a black hole, gas lights up and produces a huge amount of energy. This energy is typically detected using visible light or X-rays. However, the astronomers conducting this study were only able to detect the growing black holes using infrared light. The team made use of data from many different telescopes, including the Hubble Space Telescope and infrared Spitzer Space Telescope.

The researchers developed a new technique to determine how likely it is that two galaxies are very close together and are expected to collide in the future. They applied this new method to hundreds of thousands of galaxies in the distant universe (looking at galaxies formed 2 to 6 billion years after the Big Bang) in an attempt to better understand the so-called ‘cosmic noon’, a time when most of the Universe’s galaxy and black hole growth is expected to have taken place.

Understanding how black holes grew during this time is fundamental in modern day galactic research, especially as it may give us an insight into the supermassive black hole situated inside the Milky Way, and how our galaxy evolved over time.

As they are so far away, only a small number of cosmic noon galaxies meet the required criteria to get precise measurements of their distances. This makes it very difficult to know with high precision if any two galaxies are very close to each other.

This study presents a new statistical method to overcome the previous limitations of measuring accurate distances of galaxies and supermassive black holes at cosmic noon. It applies a statistical approach to determine galaxy distances using images at different wavelengths and removes the need for spectroscopic distance measurements for individual galaxies.

Data arriving from the James Webb Space Telescope over the coming years is expected to revolutionise studies in the infrared and reveal even more secrets about how these dusty black holes grow.

Sean Dougherty, postgraduate student at Newcastle University and lead author of the paper, says, “Our novel approach looks at hundreds of thousands of distant galaxies with a statistical approach and asks how likely any two galaxies are to be close together and so likely to be on a collision course.”

Dr Chris Harrison, co-author of the study, “These supermassive black holes are very challenging to find because the X-ray light, which astronomers have typically used to find these growing black holes, is blocked, and not detected by our telescopes. But these same black holes can be found using infrared light, which is produced by the hot dust surrounding them.”

He adds, “The difficulty in finding these black holes and in establishing precise distance measurements explains why this result has previously been challenging to pin down these distant ‘cosmic noon’ galaxies. With JWST we are expecting to find many more of these hidden growing black holes. JWST will be far better at finding them, therefore we will have many more to study, including ones that are the most difficult to find. From there, we can do more to understand the dust that surrounds them, and find out how many are hidden in distant galaxies.”


Media Contacts

Gurjeet Kahlon
Royal Astronomical Society
Mob: +44 (0)7802 877 700
press@ras.ac.uk

Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)7802 877699
press@ras.ac.uk

Ivan Lazarov
Newcastle University
+44 (0) 191 208 7850
Ivan.Lazarov@newcastle.ac.uk

Science Contacts

Dr Chris Harrison
School of Mathematics, Statistics and Physics, Newcastle University
christopher.harrison@newcastle.ac.uk

Further Information

The research appears in Obscured AGN enhancement in galaxy pairs at cosmic noon: evidence from a probabilistic treatment of photometric redshifts’, Dougherty et al., Monthly Notices of the Royal Astronomical Society, in press.

The research is supported by a United Kingdom Research and Innovation (UKRI) Future Leaders Fellowship (MR/V022830/1).

Notes for Editors

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognises outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.

Keep up with the RAS on TwitterFacebookInstagramLinkedIn, and YouTube.

About Newcastle University

Newcastle University is a research-intensive Russell Group University. It has a world-class reputation for research excellence. Newcastle University is ranked 122nd in the world (QS World University Rankings 2023) and ranked 15th in the UK for global research power (REF 2021).

Newcastle University’s pioneering academics strive for excellence with the positive impact of their work. Our high-quality academic work is responsive to large-scale societal needs and demands. Times Higher Education University Impact Rankings 2022 ranked Newcastle 8th in the world and 1st in the UK for its impact on society and leadership in sustainable development.

Newcastle University has campuses: in the UK, Singapore and Malaysia.

Submitted by Gurjeet Kahlon on Wed, 10/05/2023 - 12:26