

What are GRBs?

They are the brightest flashes of gamma-rays in the Universe.

When a massive star collapses into a black hole in a distant galaxy, the material is accelerated to ultrahigh speeds along the narrow beam of a jet.

The emission we detect is from:

- The gamma-ray prompt (internal/magnetic dissipation mechanisms).
- The afterglow: reverse and forward shock (deceleration of the material by the ambient medium).

Theoretically challenging

They are a test of physics in extreme environments: strong gravity/magnetic fields with material ejected at velocities close to the speed of light.

What is the role of the magnetic fields in Gamma-ray bursts (GRBs) outflows?

Núria Jordana-Mitjans

University of Bath

Reverse

shock

Prompt

Central engine:

black hole

We use early-time polarization observations of GRBs to determine the structure of the magnetic field (the degree of order) and distinguish between jet models: **magnetized vs baryonic**.

GRBs are highly polarized at early times (for prompt/reverse shock emission), which supports a **mildly magnetized jet model** with large-scale magnetic fields advected from the black hole.

Key-findings

GRB 190114C is the most energetic GRB ever detected (in the TeV domain).

The polarization was surprisingly low seconds after the burst for reverse shock emission.

We need a mechanism for the distortion of the magnetic field during the gamma-ray prompt: magnetic dissipation. **Evidence of a highly magnetized jet.**

Forward

Check the paper

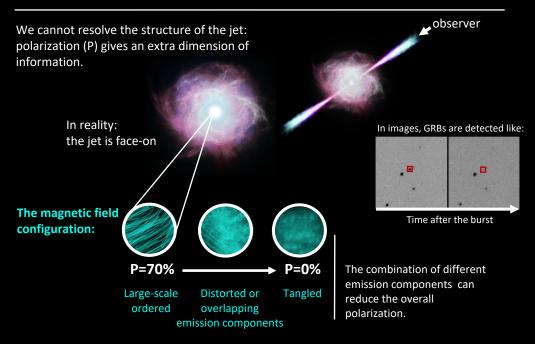
her

shock

How are they detected?

If the jet of the GRB points towards the Earth, we can detect them by their characteristic gamma-ray flash.

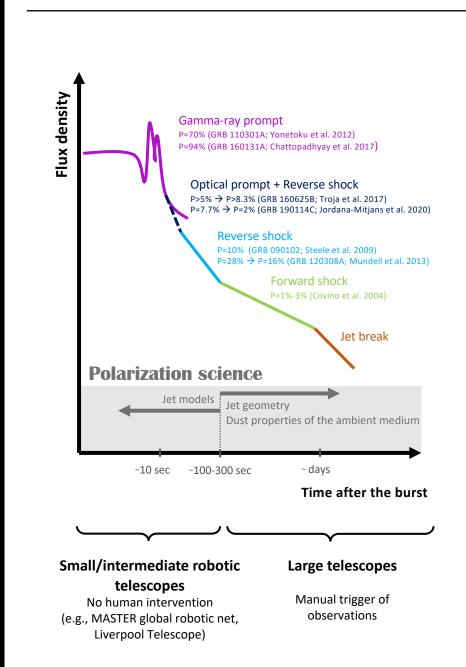
We are detecting about 200 GRBs per year with spaceborne gammaray telescopes, which trigger realtime alerts to ground-based telescopes.

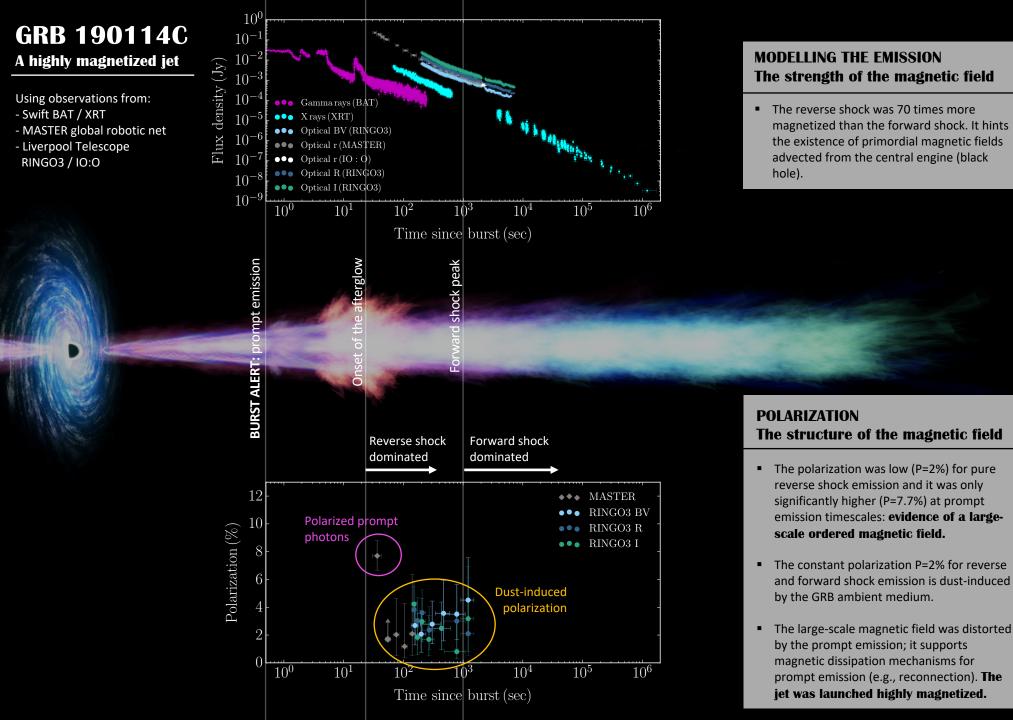

Observationally challenging

The emission fades quickly: we need a rapid response from telescopes.

Early-time GRB polarization studies

A direct probe of the structure of magnetic fields within the emission region


Polarization measurements from prompt and reverse shock emission can discriminate among competing **jet models**:


Baryonic jet:Tangled magnetic fields are locally produced in shocks.Unpolarized emission.

Magnetized jet:Large-scale ordered magnetic fields are advected from the central engine.Highly polarized emission.

How the jet is launched?	Baryonic	Mildly magnetized	Highly magnetized
Prompt emission dissipation mechanism	Internal	Internal	Magnetic (distortion of the magnetic fields)
Polarized prompt?	х	yes	yes
Polarized reverse shock?	x	yes	x
Polarized forward shock?	x	x	x
Examples		GRB 090102 GRB 120308A	GRB 190114C

The GRB emission

