Gravitational waves from supermassive black hole binaries

Hannah Middleton 14th April 2023 RAS, Burlington House, London

hannahm[at]star.sr.bham.ac.uk Institute for Gravitational Wave Astronomy University of Birmingham

Overview

- Gravitational wave spectrum
- Pulsar timing arrays & massive black hole binaries
- LISA & massive black hole binaries
- The future is multi-band!

Gravitational wave spectrum

Gravitational wave spectrum

Low frequency

Pulsar timing arrays

[Image: D. Champion]

Massive black hole binaries

Expect there to be massive black hole binary mergers throughout cosmic history.

-> A population of merging systems.

-> Gravitational wave background.

[Images: Galaxies: NASA. Merger tree: M. Volonteri (adapted).]

Pulsar timing arrays

Search for changes in pulse time of arrivals from array of pulsars.

PTA GW search papers Antoniadis+2021 (IPTA) Arzoumanian+2020 (NANOGrav) Chen+2021 (EPTA) Goncharov+2021 (PPTA)

140

160

180

[Images: Carl Knox / OzGrav / Swinburne. PTAs. HM.]

Current pulsar timing array results

Common red noise process.

Seen by IPTA, PPTA, NANOGrav & EPTA.

IPTA Results:

Assuming a spectral index:

 $\alpha = -2/3$

consistent with a population of inspiraling massive black hole binaries, the amplitude is:

$$A = 2.8^{+1.2}_{-0.8} \times 10^{-15}$$

1e-30 4 -2 Correlation 0 -2 -HD Monopole 50 100 150 n Angular separation

Results from IPTA second data release Antoniadis+ 2021

> Stay tuned for the next data release results from the PTAs

A hint of gravitational waves?

If we assume that the observed common noise process is a real gravitational wave signal, what could we learn from it?

Learning about massive black hole binaries with PTAs

The merger rate density is at the higher end of that allowed by the astro-informed model.

Other constraints from astro-informed model:

- Prefer higher masses
- Prefer shorter merger timescales

Mid frequency

Space-based detector

LISA: Laser Interferometer Space Antenna

Large-scale space mission led by European Space Agency (ESA).

Launch in \sim mid 2030's.

Aiming for ESA adoption later this year / early next year

What will LISA observe?

Living Review: Amaro-Seoane+ 2023 *Astrophysics the Laser Interferometer Space Antenna*

Galactic binaries e.g. Kupfer+2023, Finch+2022 Stellar mass black hole binaries e.g. Klein+2022, Sesana 2016

Massive black hole binaries e.g. Steinle+2023 (in prep), Pratten+2022, Mangiagli+2020 Extreme mass ratio inspirals (EMRIs) e.g. Amaro-Seoane 2021, Berry+2019

Observing black hole binaries with LISA

Testing parameter estimation with black hole binaries in LISA.

Results from Pratten+2022.

Using Balrog, a software package for LISA data analysis being developed in Birmingham. See e.g. Roebber+2020, Buscicchio+2021

Observing black hole binaries with LISA

LISA sensitivity to massive black hole binaries.

Higher mass overlap with possible PTA sources.

Steinle,HM+2023 (in prep).

Multiband with LISA and PTAs

[Image: LISA: AEI/MM/exozet. PTA: D. Champion.]

Combining LISA & PTA results

Using the two population models & PTA results, how many mergers in 1 year?

Again, we make the assumption that the speculative PTA signal is a detection.

What does this mean for LISA?

- Compute number of mergers in 1 year
- What fraction are detectable?
 - Using Balrog data analysis software
- Estimate ranges for number of mergers LISA might see in 1 year:

Total mass range:	10^6 – $10^7 M_{\odot}$ 5–95% credible range (median)	10^7 – 10^8 M $_{\odot}$ 5–95% credible range (median)	10^8 – 10^9 M $_{\odot}$ 5–95% credible range (median)
Agnostic model	0–82700 (median: 75)	0–434 (median: 15)	0–2 (median: ~0.2)
Astro-informed model	0–391 (median: 5)	0–134 (median: 6)	0–1 (median: ~0)

Results from Steinle, HM+2023 (in prep).

Summary

- Pulsar timing arrays will provide insights to the massive black hole binary population.
- LISA will observe the merger of individual signals.
- The future is multi-band!

Thank you!

A few references

Amaro-Seoane+2023,Living Rev. Relativ. 26 <10.1007/s41114-022-00041-y> Amaro-Seoane 2021 Handbook of GW astronomy. <arXiv:2011.03059 > Antoniadis+2021 (IPTA), MNRAS, Vol 510, <arXiv:2201.03980> Arzoumanian+2020 (NANOGrav), ApJ.Lett.Vol 905, <arXiv:2009.04496> Berry+2019, BAAS 51 <arXiv:1903.03686> Buscicchio+2021, PRD Vol 104 <arXiv:2106.05259> Chen+2021 (EPTA) MNRAS, Vol 508, <arXiv:2110.13184> Chen+2019, MNRAS, Vol 488, <arXiv:1810.04184> Chen+2017a MNRAS, Voll 468 <arXiv:1612.02826> Chen+2017b, MNRAS, Vol 470 <arXiv:1612.00455> Finch+ 2022 <arXiv:2210.10812> Goncharov+2021 (PPTA), ApJ. Lett. Vol 917, <arXiv:2107.12112> Klein+2022 <arXiv:2204.03423> Kupfer+2023 <arXiv:2302.12719> Mangiagli+2020 PRD 102<arXiv:2006.12513 > HM+2021, MNRAS Vol 502, <arXiv:2011.01246> HM+2018, Nat. Comm. Vol 9, <arXiv:1707.00623> HM+2016, MNRAS, Vol 455, <arXiv:1507.00992> Pratten+2022 <arXiv:2212.02572> Roebber+2020, ApJ.Lett. Vol 894 <arXiv:2002.10465> Sesana 2016, Phys. Rev. Lett. Vol 116, <arXiv:1602.06951> Steinle, HM+2023, in prep.

