The Search for Dual Active Galactic Nuclei

Dr. Adi Foord Porat Postdoctoral Fellow, Stanford University "Evidence for supermassive black hole binaries" April 14th, 2023

Mergers are believed (*by some*) to play an important role in AGN fueling and growth

T = 0 Myr

April 14th, 2023 ||

🈏 @AdiFoord 💦

🗹 foord@stanford.edu

www.AdiFoord.com

Dual AGN are unique observational flags of mergerdriven SMBH growth

Supermassive black hole pairs are a result of galaxy mergers, where each galaxy has its own central SMBH

"Dual SMBH" =

- SMBH pair at kpc-scale separations
- not yet gravitationally bound
- system is losing energy and decreasing separation via dynamical friction

"Dual AGN" = actively accretion dual SMBH

We are still trying to quantify the population of dual AGN

April 14th, 2023 ||

🄰 @AdiFoord

We are still trying to quantify the population of dual AGN

April 14th, 2023 ||

🈏 @AdiFoord

We are still trying to quantify the population of dual AGN

April 14th, 2023 ||

🈏 @AdiFoord

Before 2010, only a handful of dual AGN were known ...

Most dual AGN were serendipitous discoveries, or follow-up X-ray/Radio observations of known galaxy mergers

NGC 6240 (Komossa+2003) X-ray confirmation

MRK 463 (Bianchi+2008) X-ray confirmation

MRK 739 (Koss+2011) X-ray confirmation

MadiFoord @

🗹 foord@stanford.edu

SDSS: Large spectroscopic searches change the field

With the advent of large spectroscopic surveys of galaxies, like SDSS, the number of dual AGN candidates exponentially increased

foord@stanford.edu

🔰 @AdiFoord

Sifting through available SDSS spectra ,100s of double peaked found in SDSS spectral archives

Check out: Wang+2009, Comerford+2009, Smith+2010, Liu+2010

www.AdiFoord.com

April 14th, 2023 ||

SDSS: Large spectroscopic searches change the field

Spatially resolved spectroscopy shows locations are coincident with galactic nuclei (Check out: Gerke+2007, Comerford+2009, Comerford+2012)

April 14th, 2023 ||

🈏 @AdiFoord 🛛 🖂 foord@stanford.edu

Double peaked emitters: dual AGN or outflows?

Even for spatially resolved double peaked sources, follow-up observations showed that the majority were likely single AGN

Follow-up with VLA on 18 dual AGN candidates show that 5 are dual AGN (7 are AGN wind-driven outflows, 5 are radio-jet driven outflows, and 1 is rotating narrow-line region)

April 14th, 2023 ||

Many sources have [O III] lines have nearly equal intensities, and line ratios are more similar to each other, suggesting a single ionizing source (and are inconsistent with a binary scenario)

🄰 @AdiFoord

Candidates to direct detection: follow-up is necessary

Directly detecting radio emission from each SMBH is one the best ways to confirm closely separated dual AGN

The typical mas-scale angular resolution achievable with VLBI networks allows directly resolve as small as ~1 pc in the local Universe and ~ 10 pc at any redshift.

0402+379 at 8 GHz. Components C1 and C2 correspond to the two radio nuclei at projected separation of 7.3 pc

X-rays are great rays to find dual AGN (& high-resolution is the best!)

NGC 6240 (Komossa+2003) X-ray confirmation

MRK 463 (Bianchi+2008) X-ray confirmation

MRK 739 (Koss+2011) X-ray confirmation

Resolving 2 X-ray point sources with X-ray luminosities >10⁴¹ erg s⁻¹ can confirm any dual AGN candidates

April 14th, 2023 ||

🈏 @AdiFoord

🗹 foord@stanford.edu

X-rays are great rays to find dual AGN (& high-resolution is the best!)

With Chandra we can find the most closely separated systems

April 14th, 2023 ||

🥑 @AdiFoord

BAYMAX (Bayesian Analysis of Multiple AGN in X-rays) allows for statistical analyses on Chandra observations

BAYMAX calculates the Bayes factor:

 $P(M|D) = \frac{\int P(D|\theta_1, M_1) P(\theta_1|M_1) d\theta_1}{\int P(D|\theta_2, M_2) P(\theta_2|M_2) d\theta_2} ,$ which represents the posterior odds or the

degree to which we favor one hypothesis over the other

🥑 @AdiFoord

Bolded simulations are the dual AGN

April 14th, 2023 ||

📨 foord@stanford.edu 🛛 🌐 www.AdiFoord.com

BAYMAX (Bayesian AnalYsis of Multiple AGN in X-rays) allows for statistical analyses on *Chandra* observations

Analyzing AGN activity in nearby triple galaxy mergers

April 14th, 2023 ||

MadiFoord @

🗹 foord@stanford.edu

Analyzing AGN activity in nearby triple galaxy mergers

 \searrow

April 14th, 2023 ||

foord@stanford.edu

Analyzing AGN activity in nearby triple galaxy mergers

April 14th, 2023 ||

MadiFoord @

foord@stanford.edu

Gaia is making a mark in the dual AGN community

'Varstrometry' – where variability-induced astrometric jitter, i.e., temporal displacements of photocenter in unresolved sources, can be used to search for dual AGN.

🄰 @AdiFoord

April 14th, 2023 ||

Gaia is making a mark in the dual AGN community

'Varstrometry' – follow up Hubble Space Telescope images shows multiple sources at most locations! Many are lenses, but some a likely dual AGN.

🔰 @AdiFoord

Gaia is making a mark in the dual AGN community 'Gaia Multipeak (GMP) method' – searching for the presence of multiple peaks in the observed 1D light profiles

"ipd_frac_multi_peak" is Gaia catalogue parameter that gives the fraction of Gaia transits in which the object appears to have multiple peaks inside the photometric aperture

Gaia is making a mark in the dual AGN community 'Gaia Multipeak (GMP) method' – searching for the presence of multiple peaks in the observed 1D light profiles

Follow-up HST once again shows many pairs of sources at each location!

Confirmation requires a multiwavelength analysis.

April 14th, 2023 ||

🄰 @AdiFoord

🗹 foord@stanford.edu

BAYMAX has recently been used in a study on a varstrometry-identified dual AGN candidate

Discovered via "varstrometry" and confirmed via a multi-wavelength analysis (optical photometry and spectroscopy, radio imaging, IR imaging)

April 14th, 2023 ||

🈏 @AdiFoord 🛛 🌔

🗹 foord@stanford.edu

www.AdiFoord.com

Dual AGN are usually heavily obscured ...

s_1)

(erg

10keV

L_{X,2}-

бo

40

39

40

The fraction of Compton thick AGN hosted in late-merger galaxies is higher than in local hard X-ray selected AGN

Dual AGN have systematically lower hard X-Ray luminosities, at fixed [OIII] λ 5007 luminosity, than single AGN

40

42

(erg s⁻¹)]

Type 2 AGNs

βÌ

41

 $\log \left[L_{[0 \parallel] \lambda 5007} / (erg s^{-1}) \right]$

Φ

Q

42

40

April 14th, 2023 ||

🄰 @AdiFoord 🛛 🖂

Type 1 AGNs

41

log [L[0 ||] λ5007

... and prefer later-stage galaxy mergers

Dual AGN prefer closely separated, gas-rich environments. Late-stage major mergers are more likely to have dual AGN.

Infrared observations can find the most heavily obscured mergers

High-resolution IR observations resolve two stellar cores in nearby galaxy mergers

Pre-selection in the mid-IR provides an efficient way to detect dual AGN in late-mergers

April 14th, 2023 ||

🄰 @AdiFoord

foord@stanford.edu

Large, systematic, X-ray based surveys are a **necessary** next step to understand how SMBHs grow & evolve

Cosmological simulations predict that the fraction of dual AGN increases with redshift

But, there is a mismatch between observations and simulations

There has yet to be a systematic, and observational, analysis of dual AGN:1) at high-redshift and2) as a function of redshift

🔰 @AdiFoord

foord@stanford.edu

Large, systematic, X-ray based surveys are a **necessary** next step to understand how SMBHs grow & evolve

Brandon Sandoval Graduate student @ Caltech 2.5 < z< 3.5

Kalista Schauer Master's student @ Stanford 0.5 < z< 1.0

🄰 @AdiFoord

🗹 foord@stanford.edu

Large, systematic, X-ray based surveys are a **necessary** next step to understand how SMBHs grow & evolve

Brandon Sandoval Graduate student @ Caltech 2.5 < z< 3.5

Kalista Schauer Master's student @ Stanford 0.5 < z< 1.0

April 14th, 2023 ||

🥑 @AdiFoord

🗹 foord@stanford.edu

www.AdiFoord.com

Quantifying the Rate of high-redshift Dual AGN

Analyzing AGN from **COSMOS**, **X-UDS**, **AEGIS-XD**, & **CDFS**, we only include observations with:

- >50 counts (0.5 8 keV, 10^{43} erg/sec for a source at z = 3.5)
- Off axis-angle < 5',
- 2.5 < z < 3.5

This results in a sample size of **66 sources**

Sandoval, Foord, Allen+2023

Brandon Sandoval

April 14th, 2023 ||

🄰 @AdiFoord

foord@stanford.edu

Quantifying the Rate of high-redshift Dual AGN

We find 0/66 sources with significant Bayes factors in favor of the dual point source model!

Sandoval, Foord, Allen+2023 COSMOS1 XUDS3

This is likely due to 1) small sample size, 2) low number of counts per source, 3) difficulty detecting duals at high OAA

🥑 @AdiFoord

Large, systematic, X-ray based surveys are a **necessary** next step to understand how SMBHs grow & evolve

April 14th, 2023 ||

🈏 @AdiFoord 🛛 🖂 foord@stanford.edu

Future high-resolution, large FOV, X-ray telescopes will find over an order of magnitude more AGN pairs than currently known

AXIS will discover > an order of magnitude more AGN pairs than currently capable with Chandra.

With AXIS, we expect to find hundreds to thousands of new dual AGN, allowing for population studies & modeling of dynamical friction merging stage

April 14th, 2023 ||

🄰 @AdiFoord 🛛 🚺

foord@stanford.edu

Backup

70 nearby (z<0.037) AGN to analyze with BAYMAX

- 20/70 have archival *Chandra* observations
- 50/70 have received new *Chandra* observations

Analyzing this sample with BAYMAX, we are sensitive to dual AGN with physical separations **as** small as 14 pc and complete to separations larger than 250 pc

Primary point source 100 spectral realizations

Secondary point source 100 spectral realizations

The physical separations between each dual AGN candidate span between 260 - 660 pc, and if confirmed will be some of the most closely separated dual AGN detected to date.

Foord et al. 2023, in prep

Candidates to direct detection: follow-up is necessary

Directly detecting radio emission from each SMBH is one the best ways to confirm closely separated dual AGN

Care must also be taken when conducting only low-resolution or single-frequency measurements, **as AGN are expected to be compact & flat radio sources**

X-rays are great rays to find dual AGN (& high-resolution is the best!)

NGC 3393 (binned and smoothed Chandra data) Follow-up shows that NGC 3393 has extended radio emission and that binning and smoothing the Chandra PSF can result in a false positive!